An E-M Algorithm for Joint Model Estimation

Dr. Paul M. Baggenstoss and T. E. Luginbuhl *
Naval Undersea Warfare Center
Newport RI, 02841
401-832-8240 (TEL)
p-m.baggenstoss@ieee.org (EMAIL)

November 24, 1999

Abstract

This paper describes an EM algorithm for jointly estimating the parameters of multiple models
when the data is an unlabeled mixture of data from all models. It maximizes the likelihood function
of all the parameters jointly, but does so without incurring the full dimensionality of the problem.
The algorithm uses class-specific sufficient statistics.

Keywords: sufficient statistics, Gaussian mixtures, EM algorithm, expectation-maximization, pa-
rameter estimation, class-specific, classification.

1 Introduction

In many real-world problems, the data may contain one of a number of possible signal subclasses where
the classification of the signals as they arrive at the input are unknown. This is sometimes known
as the unlabeled data problem (i.e. Redner and Walker [1], Type I problem) and results in a mixture
probability density function (PDF). The mixture PDF of the data X is written

M
p(X;A) = Z P(X[Hpm; Am) p(Hpm), (1)

m=1

where H,, is the hypothesis that the data is from signal subclass m, and p(H,,) is the a priori
probability of subclass m. The PDF parameters, which we denote by A, consist of the subclass
parameters as well as the mixing probabilities:

A= {p(Hl),---,p(HM),Al,---,AM} ;

Maximum likelihood estimation involves maximizing p(X;A) over A. To better understand the com-
plexities of this problem, it is useful to examine the simpler labeled data problem. Parameter estimation
involves a set of M smaller problems

max p(X™|Hm; M) (2)
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where X™ is labeled data from the class m. This is best accomplished using sufficient statistics. Let
Z,, = T, (X) be a sufficient statistic for Ay, then we use

n}a.x P(Zpy | Hms Am), (3)
where Z" = T,,,(X™) is obtained from labeled data from subclass m. By themselves, these smaller
problems may be quite simple. In contrast, the unlabeled data problem is much more difficult because

1. it involves a high dimensional search over the combined parameter set, and
2. there may not be a single sufficient statistic for all signal classes.

In this paper, we solve both problems through the introduction of a “common” or “noise-only” class
H,.

2 Mathematical Results

2.1 Assumptions

We now introduce the “common” class Hy through the following two assumptions.

Assumption 1 Let the PDF p(X|Hy) be a member of each PDF family p(X|Hp; Am), m=1,..., M.
More precisely, for each m, there exists a parameter value N3, such that

lim  p(X| Homs Am) = p(X|Ho)

Am—AY,

In most applications, we may think of Hy as the noise-only conditon, i.e. where the signal amplitudes
are zero and only noise remains. Another interpretation is that Hy is the normal condition, such as
in automatic fault localization.

Assumption 2 Suppose for each Class PDF, p(X|H,,), there ezists a sufficient statistic for the pa-
rameter A\p. Denote this sufficient statistic by Z, = T (X).

A result from decision theory is that the likelihood ratio is unchanged when written as a function of
a sufficient statistic (i.e. Kendall and Stuart [2], section 22.14), thus

p(X|Hm; >\m) _ p(X|Hm; )\m) _ p(zm|Hm§ )‘m) _ p(zm|Hm; Am)
p(X|Ho) P(X[Hm; AY)  p(Zm |Him; A,) P(Zm|Hy)

Therefore,
M
——————p(Hy,). 4
Define L(X;A) as
K
_ 71 (X3 A)

p(X|Ho) — k—lp(Xk ‘H())

=1

K M
= IT 250 iy o)
)

where Z,, 2 Trn(Xg), A= { (Hpm); {m ¥M_; 1. Now L(X; A) may be used for the likelihood function
for estimation of A because the denominator is independent of A.



2.2 E-M Algorithm

The objective is to estimate A using the E-M algorithm where L(X;A) is used for the likelihood
function. The key to the E-M algorithm is the auxiliary function which, if increased or maximized
is guaranteed to result in an increase in the likelihood function. It is shown in section 5.1 that the
auxiliary function is

K M
QA A) =33 [log p(Hpm) + 108 p(Zim k| Him; Am) — 108 p(Zin | Ho)] Yk (A), (6)
k=1m=1
where Zon s Howihon)
Pllm k| HmiAm
Wp(ﬂm)
YVenk (A) — Mp( ,k| 0) (7)
P(Zz,k|H1;)\l)p(Hl)_

p(Z,x|Ho)

The physical interpretation of ., (A) is the probability that sample Xj is from model m given the
model parameters A and the data Xj;. From hereafter, we simplify the notation to v, 2 Yk (A').
Computing 7,,,x is part of the E-step. The M-step consists of maximizing (6) over A. The estimates
of p(H,,) are

1 K
P(Hm) = 22 > Vmk- (8)
k=1

Notice that in (6), the maximization (or increase) of Q(A;A’) with respect to A requires the functions

K
Qm(Am; ) = 108 p(Zan k| Hims Am) Ymk (9)
k=1

to be independently maximized (or increased) over A, for each m. This is in contrast to (5), which con-
tains mixed terms and requires joint maximization. Equation (9) is, in effect, a probabilistic weighting
of each data sample, a minor modification of individual maximum likelihood estimators represented by
(3). If an existing algorithm exists for maximization (or increase) of S f ; 10g p(Zy k| Hm; Am), then
this algorithm may be used with a minor modification. One way to do it, albeit impractical, would
be to scale v, by a large constant C, round to an integer ng,, = |C Ymk|, then form a larger data
set created by replicating each data sample Z,, ; by the corresponding integer:

22 {Zm - T} AZimp - Zm2}s - A2 - Zni )}
then maximize the PDF of Z’ under the assumption of independence of the samples, i.e.,

KI

> log p(Zij,| Hin; Am)
k=1

where K' = E,le Ngm- A more practical, yet suboptimal method would be to threshold ~,,; and
include only those data samples in X that exceed the threshold. Of course, the best approach would
be to integrate the weighting directly in the algorithm.



2.2.1 Summary of the E-M algorithm

Prior to beginning the algorithm, it is assumed that initial values of P(H,,) and ~,,; are available
(uniform constants can be used for initialization). The algorithm proceeds as follows:

1. E-Step: Use (7) to update v, for 1 <k < K,1<m < M.
2. M-step.
(a) Maximize (or increase) (9) over A, for 1 <m < M.
(b) Use (8) to update P(H,,) for 1 <m < M.

3. Repeat steps 1 and 2 until convergence.

2.3 EM algorithm for a Non-Homogenious Gaussian Mixture

Suppose that the sufficient statistics Z,, are known but parametric forms for the PDFs are not known.
Now, if p(Z,,|H,,) are continuous, they may be approximated to arbitrary accuracy by any kernel-based
estimator [3], such as the method of Gaussian Mixtures [4]. We now show how the E-M algorithm
is changed when the individual class PDFs where p(Z,,|H,,) are Gaussian Mixtures. Consider a
Gaussian mixture for Z,, € R under class m

m|H Zamz mal-l'mz'a Emz) (10)

where

N(Zy, p, ) = (27)Nm/? |2|_1/2exp{— (Zn —p) =71 (Zm—u)},

N | =

where Ny, is the dimension of Z,,. By substituting (10) into (4), we have an expression for p(X|A)
that is a mixture of mixtures, with each sub-mixture a function of a different sufficient statistic. We
call this a non-homogeneous Gaussian mixture. Deriving the E-M algorithm requires regarding not
only the class-assignments as missing information, but the the Gaussian mixture mode assignments
as well. This is analogous to the incorporation of Gaussian mixtures in a Baum-Welch algorithm for
HMMs [5] where the Markov state assignments take the part of the class assignments. The auxiliary
function incorporating the mixture mode assignments is derived in section 5.2 and is given below.

K M Lmnm
QA A) = DY logp(Hip) +10g aimi + 10 N (Zy o Ponis i) — 108 p(Zim, | Ho )]
k=1m=11i=1 (11)
'gmik(A,)
where
o .N(Zm,ka“‘m,z‘azm,i) p(H )
mae m
it (1) 2 D21 Ho) (12)

lek|Hl,>\l)
H,
121 (Zy,%|Ho) p(H))

The physical interpretation of &, (A) is the probability that sample Xy, is from model m and mixture
component ¢ given the model parameters A and the data X;. From hereafter, we simplify the notation



t0 &mik 2 Emic(A'). Computing &,k is part of the E-step. In the M-step, we first update the class

probabilities
1 X
P(Hp) == Ymks
K k=1

where as before,
p(zm, ‘Hm;)\m)
P(Zi,k\Ho) p(Hm) o
i = =3 b
P(Zy | Hi3\) i=1
p(Z; x| Ho) (H1)

Next, update mode weights
K
Z fmik-
_ k=1

ami — Ki.
Z Ymk
k=1

Lastly, we update p,,;, Xyi. Notice that (11) may be maximized by maximizing

K
Qmi(A; ) 27 108 N (Zin ks Bonis Bimi) Emin(A)
k=1

OvVer Wi, Xmi independently for pair (m,). This is accomplished by

K
> bmik L

_ k=1

K
> Emi
k=1

i

and
K
Z Emik (Zmk — Bmi) (Lot — Pomi)'
zmi = k=1 )

K
Z fmik
k=1

where &,k is a shorthand notation for &, (A").

(13)

(14)

Because of possible numerical issues, it may be necessary to add a constant to the diagonal ele-
ments of 3,,; at each iteration. These constants may be regarded as prior knowledge in the form of

independent measurement error variances, and should be chosen carefully.

2.3.1 Summary of E-M algorithm for non-homogenious mixture
1. E-Step: Use (12) to update &, for all k, i, m.
2. M-step.

(a) Use (13) to update P(H,,) for all m.
(b) Use (14) to update a;,; for all m,i.



(c) Use (16) to update w,,,; for all m, 1.
(d) Use (17) to update X,,; for all m, .

3. Repeat steps 1 and 2 until convergence.

3 Simulation Results (7-class example)

The example problem to be discussed here is a subset of the 9-class synthetic problem discused in a
previous paper [6]. We consider the following 7 data classes denoted Hy, ..., Hr.

e Class Hy: Noise only

e Class Hi: Long Sinewave

e Class Hy: Medium Sinewave

e Class H3: Short Sinewave

e Class Hy: Long Gaussian Signal

e (Class Hg: Short Gaussian Signal

e (Class Hg: Short Impulse Signal

e Class H7: Long Impulse Signal
Details of the signals and how they are generated may be found in the reference. For convenience, we
have tabulated the sufficient statistics as well as the distributions under Hj in tables 1, 2.
3.1 Data Set

To simulate a data set from a mixture of the seven data classes, an equal share of 1024 samples from
each data class were created. Each input data sample was a time-series of 256 data points. The
true class index of each sample was not used by the algorithm, but was remembered for use later in
validation. From each time series, features Z; through Z, were calculated.

3.2 Algorithm Initialization

Initial values of u,,; were set equal to randomly chosen (unlabeled) input data samples. Initial values
of X,,; were set equal to the sample covariance of the entire data set. Initial values of a,,; were all
equal, as were the initial values of P(H,,). The number of Gaussian mixture components per data
class was 10.

3.3 Algorithm Performance

Algorithm performance may be measured by monitoring the likelihood function (5). Notice also that
Ymk In (9) acts as a probabilistic data weighting for each sample. It is in effect an estimate of the
probability that data sample k is from class m. If the algorithm is working properly and p(Z,,|Hp,)
are converging to the true PDFs, v,,; should act as data classifiers. Thus, for a given sample k,
maximizing over m will produce a guess as to the class index of the sample. But this will not work in
general. Specifically, if two data classes have the same or equivalent sufficient statistics, the algorithm
has no way to make the separation between the classes except perhaps as different Gaussian Mixture



Z, = [Zfil z; cos(wi)]2 + [Zfil T; sin(u;z')]2

2, = [ s con(oi)] + [£0 i inf)]

Z3 = [ZZN:/{L T cos(cuz')]2 + [ZZN:/{L T; sin(wz’)}2

_ N 2
Zy=), 17

N/2
Zs = 212/1 5512

Ze = log(z?)

Z7 = log(z? + z3)

Table 1: Class-Specific Statistics

components within a fixed m. This shortcoming of the algorithm is expected since it is designed
only to estimate the PDF of the overall non-homogenious mixture (Type I problems). The separation
of the subclasses is irrelevant to its operation. However, if all the sufficient statistics are different,
it has a chance of accomplishing this goal (Type II problems). In this example, we monitor the
algorithm performance as a Type II problem by determining the probability of correct classification
(P.). P. was determined by determining what percentage of the data was classified correctly (i.e.
when arg max,, y,,x was equal to the true class index).

The algorithm was allowed to iterate 380 times. At each iteration, the total likelihood as well as
the probability of correct classification (P,.) were determined. These quantities are plotted in Figure
1. Notice that the likelihood was monotonic increasing as expected.

The algorithm was re-run using labeled data, i.e. only data from class m was used to train
P(Zp|Hp,). The result is plotted in Figure 2. As would be expected, P, is higher, but the likelihood
is lower (not discernible on the graph). Using labeled data does not necessarily maximize (5).

The PDF estimate of p(Z4|H4) from unlabeled data is plotted in Figure 3. Superimposed on
the graph are the histograms of Z, for all data classes and for just class 4. The fact that the PDF
estimate matches the histogram for class 4 illustrates the fact that PDF estimates may be obtained
from unlabeled data.
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Figure 1: Algorithm Convergence Properties. Scaled log likelihood values superimposed on a plot of
P,..
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Figure 2: Repeat of Figure 1 with labeled data used to train p(Z,,|H,,).



p(Z1|Ho) = (£2;) exp {2 )

P(2alHo) = (553 ) exp {375 |

p(Ze|Ho) = (2m02) ' exp {—55 } €%/2
p(Ze|Ho) = (4m02) ' exp {—5} e%/2

Table 2: Distributions of Class-Specific Statistics

4 Conclusions

An E-M algorithm has been derived for the case when the input data is a mixture density of several
data classes, with each data class dependent on a different set of parameters. By taking advantage
of different sufficient statistics for each data class, it is possible to jointly estimate the parameters
efficiently and with low dimensionality.
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Figure 3: PDF estimation results for feature Z, using unlabeled data. Graph includes histogram of
data from all 7 classes (dotted), histogram of data from class 4 (circles), PDF estimate for p(Z4|Hy)
(solid). Data is plotted on a normalized axis. The designation “SUX1” is the name used to identify
feature Zy4.

5 Derivation of E-M Algorithm for Joint Model Estimation

5.1 Arbitrary PDFs

This derivation is similar to that found in Redner and Walker [1]. The missing information in this
problem are the class assignments

I= {ik}li{:l
of each X to a PDF (class). Each i is an integer between 1 and M. The complete information is
then

Y = XUI
= {Xsintier
= {Yk}l{:(ZI
The likelihood function of the complete data is defined as
Y;A)
L(Y:A) 2 p(Y;
(M) = o[,

_ HP (Xglig; A) plig; A)
p(Xx[Ho)

k=1
K
( Zkk| ik )
— 5 H
11550,y P

10



where Z,,, = T (Xy). Hence, the PDF of the missing data conditioned on the observed data is given
by

p(Y;A) _ L(Y;A)

p(X;A) — L(X;A)

p(IX;A) =

( zk,k‘leka)\ )
K
— H lk) |H0)
M
- Hop: A
k=1 z p mk| ) (Hm)
= P(Znk|Ho)

p(H;,)

K
= v (A)
k=1

where
p(Zm,k|Hm; >\m)
P(Ziyn 1| Ho)

Now the auxiliary function can be defined. The auxiliary function of the E.M. algorithm Q(A;A’) is
defined as

Q(A;A) = Egxan log L(Y;A)

= ) log L(Y;A) p(I|X; A')
I (18)

K
= ZZ logp ik ) +1log p(Z ik, k| i A )—logp ik, k‘HO H’)’zjj AI

where

ISEDIPIRDS

1=112=1 k=1

.

First, it is necessary to prove that increasing Q(A; A’) also increases L(X;A) with respect to A. The
following proof follows the form of Streit [7] of Baum’s inequality [8].

11



Proof: Suppose Q(A;A') > Q(A'; A'), then

0 < QA;A)—Q(A;A)

= Y {log L(Y; A) p(I|X;A')} = > {log L(Y; A') p(I|X; A')}
I I
= ; {log £ pAIX; A) |

S () B

IN

= w2 (LY A) = L(Y;A)}
I

— L(X;A) 1
T LKA

— L(X;A) > L(X;A)
where we use the fact that log(X) < X — 1 and that

> p(Y;A) )

. _ I
2L = Ry~ (X ()

= L(X;A),

(.

Having proved this, Q(A;A’) now can be obtained. First note that due to the independence of the
samples,
> p(|X;A) = plix|Xe; A) = 1.

ik

i

As a result,
P(Zsy k| Hiy s Niy,) p(H,)
Z; i|H
> pIX5A) = —; P2l ) = Yigk (), (19)
1/ix Zp(zl,k\Hl; ) p(Hy)
p(Zy | Ho)

=1

where I|ij is the summation over all indices except i,

gadid oM M

I‘Zk 11:1 12:1 ’lk_lzl Zk-‘rl:l ZK:I

12



Next, note that equation (18) can be rewritten as

K
QAT = Y0 Alir) B(T)
1

k=1
K

= > > > Al) B
k=1 ix I)ig

K
= D> A(ix) Y B()

k=1 iy, Iig

Substituting (19) for the term 3-y; B(I), yields (6). This completes the derivation of the E-step of the
E.M. algorithm. The estimate of p(H,,) is obtained by maximizing Q(A;A’) with respect to p(H,,).
It is straight forward to show that the estimate of p(H,,) is equal to (8).

5.2 Gaussian Mixtures

We now derive the E-M algorithm for estimating the parameters of the PDF's of the sufficient statistics
when the PDF's are approximated by a mixture of the form (10). The missing information in this
problem is the assignments

I= {ik}lé(zl
of each X to a PDF (class) and the assignments
I =kt

of each Z,, ; to a mixture component (mode). Each i is an integer between 1 and M and each jj is
an integer between 1 and L;, . The complete information is then

Y = XUIUJ
= {Xp;ie;detE
= {Yk}k:KZI

The likelihood function of the complete data is defined by

A YA
nvih) 2

K
- 11 oz ) p(Hiy) iyjy

k=1

13



where Z,, 2 T (Xy). Hence, the likelihood function of the missing data conditioned on the observed
data is given by
p(Y;A) _ L(Y;A)

PARGA) = a6 ~ 106

— ﬁ ( zk,k|H0) p(HZk) Qi g,
= S MP(H )
m=1 p(zm,k|Ho) m
K
= [T @)
k=1

where &,k (A) is defined in (12). Now the auxiliary function can be defined. The auxiliary function
of the E.M. algorithm Q(A;A’) is defined as

QM A) £ Eggxay log L(Y;A)

= > log L(Y; A) p(I,I|X; A')
IJ

(20)

K
= >y [Ing(Hik) +log @iy j, +10g N (Zi ks iy, 0 D) — Ing(Zik,k|H0)]
17 k=1

K
T
=1
where

Jr=1

||M§

M M
A A
PIEDIIIED DD DL
I J i1=1122=1
First, it is necessary to prove that increasing Q(A; A’ ) also increases L(X;A) with respect to A. This
was proved for the general PDF case in section 5.1. The proof for the Gaussian mixture case is identical
with the exception that the summation ) ; is replaced with the summation ) ;y, therefore it is not
repeated. We may now obtain Q(A; A"). First note that due to the independence of the samples,

ZZP ik Ji | X5 A) ZZP ik k| X A) = 1.
ik ik

As a result,
N(Ziy ks iy > Zirgi) PHiy) i
ik |1 Ho
> pLIX;A) = LD — M), (21)
13[in . ZP (Z; k|Hla>\l) p(H,)

p(Zy,|Ho)

where ZIJ|ik;jk is the summation over all 1nd1(:es except i and jg,
Li, Liz Ly Lig

3 35 IR S SEED SRS 35 SRS D SR »

|ig,jr  f1=1d2=1 tg—1=14g41=1 ig=1 1=1j52=1 Je-1=1Jjg+1=1  jk=1

.

14



In a similar manner as section 5.1, the auxiliary function is derived from equation (20) using (21).
The resulting auxiliary function is given in (11).
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